diff --git a/demo/video_matting/offline/requirements.txt b/demo/video_matting/offline/requirements.txt new file mode 100644 index 0000000..44c4e44 --- /dev/null +++ b/demo/video_matting/offline/requirements.txt @@ -0,0 +1,6 @@ +numpy +Pillow +opencv-python +torch >= 1.0.0 +torchvision +tqdm \ No newline at end of file diff --git a/demo/video_matting/offline/run.py b/demo/video_matting/offline/run.py new file mode 100644 index 0000000..e2d18ea --- /dev/null +++ b/demo/video_matting/offline/run.py @@ -0,0 +1,106 @@ +import os + +import cv2 +import numpy as np +from PIL import Image +import argparse +from tqdm import tqdm + +import torch +import torch.nn as nn +import torchvision.transforms as transforms + +from src.models.modnet import MODNet + + +torch_transforms = transforms.Compose( + [ + transforms.ToTensor(), + transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), + ] +) + +print('Load pre-trained MODNet...') +pretrained_ckpt = './pretrained/modnet_webcam_portrait_matting.ckpt' +modnet = MODNet(backbone_pretrained=False) +modnet = nn.DataParallel(modnet) + +GPU = True if torch.cuda.device_count() > 0 else False +if GPU: + print('Use GPU...') + modnet = modnet.cuda() + modnet.load_state_dict(torch.load(pretrained_ckpt)) +else: + print('Use CPU...') + modnet.load_state_dict(torch.load(pretrained_ckpt, map_location=torch.device('cpu'))) +modnet.eval() + + +def offline_matting(video_path, save_path, alpha_matte=False, fps=30): + # video capture + vc = cv2.VideoCapture(video_path) + + if vc.isOpened(): + rval, frame = vc.read() + else: + rval = False + + if not rval: + print('Read video {} failed.'.format(video_path)) + exit() + + num_frame = vc.get(cv2.CAP_PROP_FRAME_COUNT) + h, w = frame.shape[:2] + + # video writer + fourcc = cv2.VideoWriter_fourcc(*'mp4v') + video_writer = cv2.VideoWriter(save_path, fourcc, fps, (w, h)) + + print('Start matting...') + with tqdm(range(int(num_frame)))as t: + for c in t: + frame_np = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) + frame_np = cv2.resize(frame_np, (672, 512), cv2.INTER_AREA) + + frame_PIL = Image.fromarray(frame_np) + frame_tensor = torch_transforms(frame_PIL) + frame_tensor = frame_tensor[None, :, :, :] + if GPU: + frame_tensor = frame_tensor.cuda() + + with torch.no_grad(): + _, _, matte_tensor = modnet(frame_tensor, True) + + matte_tensor = matte_tensor.repeat(1, 3, 1, 1) + matte_np = matte_tensor[0].data.cpu().numpy().transpose(1, 2, 0) + if alpha_matte: + view_np = matte_np * np.full(frame_np.shape, 255.0) + else: + view_np = matte_np * frame_np + (1 - matte_np) * np.full(frame_np.shape, 255.0) + view_np = cv2.cvtColor(view_np.astype(np.uint8), cv2.COLOR_RGB2BGR) + view_np = cv2.resize(view_np, (w, h)) + video_writer.write(view_np) + + rval, frame = vc.read() + c += 1 + + video_writer.release() + print('Save video to {}'.format(save_path)) + return + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument('--video_path', type=str, default='./sample/video.mp4') + parser.add_argument('--save_path', type=str, default='./sample/res.mp4', help='Video should be .mp4 format.') + parser.add_argument('--alpha_matte', action='store_true', default=False, help='If True, save alpha_matte video.') + parser.add_argument('--fps', type=int, default=30) + + args = parser.parse_args() + + if not args.save_path.endswith('.mp4'): + args.save_path = os.path.splitext(args.save_path)[0] + '.mp4' + + offline_matting(args.video_path, args.save_path, args.alpha_matte, args.fps) + +