support TorchScript

develop
kevin 2021-03-05 14:19:30 +08:00 committed by ZHKKKe
parent fe1e82c65d
commit 5da2bb6c81
7 changed files with 378 additions and 14 deletions

View File

@ -20,6 +20,7 @@ WebCam Video Demo [<a href="demo/video_matting/webcam">Offline</a>][<a href="htt
## News
- [Mar 12 2021] Add [TorchScript version](torchscript) of MODNet (from the community).
- [Feb 19 2021] Add [ONNX version](onnx) of MODNet (from the community).
- [Jan&nbsp; 28 2021] Release the [code](src/trainer.py) of MODNet training iteration.
- [Dec 25 2020] ***Merry Christmas!*** :christmas_tree: Release Custom Video Matting Demo [[Offline](demo/video_matting/custom)] for user videos.
@ -45,10 +46,10 @@ It allows you to upload portrait images and predict/visualize/download the alpha
### Community
Here we share some cool applications of MODNet built by the community.
Here we share some cool applications/extentions of MODNet built by the community.
- **WebGUI for Image Matting**
You can try [this WebGUI](https://gradio.app/g/modnet) (hosted on [Gradio](https://www.gradio.app/)) for portrait matting from your browser without any code!
You can try [this WebGUI](https://gradio.app/g/modnet) (hosted on [Gradio](https://www.gradio.app/)) for portrait matting from your browser without code!
<!-- <img src="https://i.ibb.co/9gLxFXF/modnet.gif" width='40%'> -->
- **Colab Demo of Bokeh (Blur Background)**
@ -57,6 +58,10 @@ You can try [this Colab demo](https://colab.research.google.com/github/eyaler/av
- **ONNX Version of MODNet**
You can convert the pre-trained MODNet to an ONNX model by using [this code](onnx) (provided by [@manthan3C273](https://github.com/manthan3C273)). You can also try [this Colab demo](https://colab.research.google.com/drive/1P3cWtg8fnmu9karZHYDAtmm1vj1rgA-f?usp=sharing) for MODNet image matting (ONNX version).
- **TorchScript Version of MODNet**
You can convert the pre-trained MODNet to an TorchScript model by using [this code](torchscript) (provided by [@yarkable](https://github.com/yarkable)).
## Code
We provide the [code](src/trainer.py) of MODNet training iteration, including:
- **Supervised Training**: Train MODNet on a labeled matting dataset
@ -79,7 +84,7 @@ This project (**code, pre-trained models, demos, *etc.***) is released under the
## Acknowledgement
- We thank [City University of Hong Kong](https://www.cityu.edu.hk/) and [SenseTime](https://www.sensetime.com/) for their support to this project.
- We thank
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[the Gradio team](https://github.com/gradio-app/gradio), [@eyaler](https://github.com/eyaler), [@manthan3C273](https://github.com/manthan3C273),
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;[the Gradio team](https://github.com/gradio-app/gradio), [@eyaler](https://github.com/eyaler), [@manthan3C273](https://github.com/manthan3C273), [@yarkable](https://github.com/yarkable),
for their contributions to this repository or their cool applications based on MODNet.

View File

@ -136,17 +136,31 @@ class MobileNetV2(nn.Module):
# Initialize weights
self._init_weights()
def forward(self, x, feature_names=None):
def forward(self, x):
# Stage1
x = reduce(lambda x, n: self.features[n](x), list(range(0,2)), x)
x = self.features[0](x)
x = self.features[1](x)
# Stage2
x = reduce(lambda x, n: self.features[n](x), list(range(2,4)), x)
x = self.features[2](x)
x = self.features[3](x)
# Stage3
x = reduce(lambda x, n: self.features[n](x), list(range(4,7)), x)
x = self.features[4](x)
x = self.features[5](x)
x = self.features[6](x)
# Stage4
x = reduce(lambda x, n: self.features[n](x), list(range(7,14)), x)
x = self.features[7](x)
x = self.features[8](x)
x = self.features[9](x)
x = self.features[10](x)
x = self.features[11](x)
x = self.features[12](x)
x = self.features[13](x)
# Stage5
x = reduce(lambda x, n: self.features[n](x), list(range(14,19)), x)
x = self.features[14](x)
x = self.features[15](x)
x = self.features[16](x)
x = self.features[17](x)
x = self.features[18](x)
# Classification
if self.num_classes is not None:

View File

@ -36,15 +36,38 @@ class MobileNetV2Backbone(BaseBackbone):
self.enc_channels = [16, 24, 32, 96, 1280]
def forward(self, x):
x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
# x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
x = self.model.features[0](x)
x = self.model.features[1](x)
enc2x = x
x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
# x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
x = self.model.features[2](x)
x = self.model.features[3](x)
enc4x = x
x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
# x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
x = self.model.features[4](x)
x = self.model.features[5](x)
x = self.model.features[6](x)
enc8x = x
x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
# x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
x = self.model.features[7](x)
x = self.model.features[8](x)
x = self.model.features[9](x)
x = self.model.features[10](x)
x = self.model.features[11](x)
x = self.model.features[12](x)
x = self.model.features[13](x)
enc16x = x
x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
# x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
x = self.model.features[14](x)
x = self.model.features[15](x)
x = self.model.features[16](x)
x = self.model.features[17](x)
x = self.model.features[18](x)
enc32x = x
return [enc2x, enc4x, enc8x, enc16x, enc32x]

18
torchscript/README.md Executable file
View File

@ -0,0 +1,18 @@
## MODNet - TorchScript Model
This TorchScript version of MODNet is provided by [@yarkable](https://github.com/yarkable) from the community.
Please note that the PyTorch version required for this TorchScript export function is higher than the official MODNet code (torch>=1.2.0).
You can also download the TorchScript version of the official **Image Matting Model** from [this link](https://pan.baidu.com/s/1kOmmmbG7lSZiSmDdE7CaRw) with the exextraction code `dm9e`.
To export the TorchScript version of MODNet (assuming you are currently in project root directory):
1. Download the pre-trained **Image Matting Model** from this [link](https://drive.google.com/drive/folders/1umYmlCulvIFNaqPjwod1SayFmSRHziyR?usp=sharing) and put the model into the folder `MODNet/pretrained/`.
2. Ensure your PyTorch version >= 1.2.0.
3. Export the TorchScript version of MODNet by:
```shell
python -m torchscript.export_torchscript \
--ckpt-path=pretrained/modnet_photographic_portrait_matting.ckpt \
--output-path=pretrained/modnet_photographic_portrait_matting.torchscript
```

0
torchscript/__init__.py Executable file
View File

View File

@ -0,0 +1,46 @@
"""
Export TorchScript model of MODNet
Arguments:
--ckpt-path: path of the checkpoint that will be converted
--output-path: path for saving the TorchScript model
Example:
python export_torchscript.py \
--ckpt-path=modnet_photographic_portrait_matting.ckpt \
--output-path=modnet_photographic_portrait_matting.torchscript
"""
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import modnet_torchscript
if __name__ == '__main__':
# define cmd arguments
parser = argparse.ArgumentParser()
parser.add_argument('--ckpt-path', type=str, required=True, help='path of the checkpoint that will be converted')
parser.add_argument('--output-path', type=str, required=True, help='path for saving the TorchScript model')
args = parser.parse_args()
# check input arguments
if not os.path.exists(args.ckpt_path):
print(args.ckpt_path)
print('Cannot find checkpoint path: {0}'.format(args.ckpt_path))
exit()
# create MODNet and load the pre-trained ckpt
modnet = modnet_torchscript.MODNet(backbone_pretrained=False)
modnet = nn.DataParallel(modnet).cuda()
state_dict = torch.load(args.ckpt_path)
modnet.load_state_dict(state_dict)
modnet.eval()
# export to TorchScript model
scripted_model = torch.jit.script(modnet.module)
torch.jit.save(scripted_model, os.path.join(args.output_path))

258
torchscript/modnet_torchscript.py Executable file
View File

@ -0,0 +1,258 @@
"""
This file contains a modified version of the original file `modnet.py` without
`pred_semantic` and `pred_details` as these both returns None when `inference=True`
And it does not contain `inference` argument which will make it easier to
convert checkpoint to TorchScript model.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from src.models.backbones import SUPPORTED_BACKBONES
#------------------------------------------------------------------------------
# MODNet Basic Modules
#------------------------------------------------------------------------------
class IBNorm(nn.Module):
""" Combine Instance Norm and Batch Norm into One Layer
"""
def __init__(self, in_channels):
super(IBNorm, self).__init__()
in_channels = in_channels
self.bnorm_channels = int(in_channels / 2)
self.inorm_channels = in_channels - self.bnorm_channels
self.bnorm = nn.BatchNorm2d(self.bnorm_channels, affine=True)
self.inorm = nn.InstanceNorm2d(self.inorm_channels, affine=False)
def forward(self, x):
bn_x = self.bnorm(x[:, :self.bnorm_channels, ...].contiguous())
in_x = self.inorm(x[:, self.bnorm_channels:, ...].contiguous())
return torch.cat((bn_x, in_x), 1)
class Conv2dIBNormRelu(nn.Module):
""" Convolution + IBNorm + ReLu
"""
def __init__(self, in_channels, out_channels, kernel_size,
stride=1, padding=0, dilation=1, groups=1, bias=True,
with_ibn=True, with_relu=True):
super(Conv2dIBNormRelu, self).__init__()
layers = [
nn.Conv2d(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, dilation=dilation,
groups=groups, bias=bias)
]
if with_ibn:
layers.append(IBNorm(out_channels))
if with_relu:
layers.append(nn.ReLU(inplace=True))
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class SEBlock(nn.Module):
""" SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
"""
def __init__(self, in_channels, out_channels, reduction=1):
super(SEBlock, self).__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, int(in_channels // reduction), bias=False),
nn.ReLU(inplace=True),
nn.Linear(int(in_channels // reduction), out_channels, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
w = self.pool(x).view(b, c)
w = self.fc(w).view(b, c, 1, 1)
return x * w.expand_as(x)
#------------------------------------------------------------------------------
# MODNet Branches
#------------------------------------------------------------------------------
class LRBranch(nn.Module):
""" Low Resolution Branch of MODNet
"""
def __init__(self, backbone):
super(LRBranch, self).__init__()
enc_channels = backbone.enc_channels
self.backbone = backbone
self.se_block = SEBlock(enc_channels[4], enc_channels[4], reduction=4)
self.conv_lr16x = Conv2dIBNormRelu(enc_channels[4], enc_channels[3], 5, stride=1, padding=2)
self.conv_lr8x = Conv2dIBNormRelu(enc_channels[3], enc_channels[2], 5, stride=1, padding=2)
self.conv_lr = Conv2dIBNormRelu(enc_channels[2], 1, kernel_size=3, stride=2, padding=1, with_ibn=False, with_relu=False)
def forward(self, img):
enc_features = self.backbone.forward(img)
enc2x, enc4x, enc32x = enc_features[0], enc_features[1], enc_features[4]
enc32x = self.se_block(enc32x)
lr16x = F.interpolate(enc32x, scale_factor=2.0, mode='bilinear', align_corners=False)
lr16x = self.conv_lr16x(lr16x)
lr8x = F.interpolate(lr16x, scale_factor=2.0, mode='bilinear', align_corners=False)
lr8x = self.conv_lr8x(lr8x)
return lr8x, enc2x, enc4x
class HRBranch(nn.Module):
""" High Resolution Branch of MODNet
"""
def __init__(self, hr_channels, enc_channels):
super(HRBranch, self).__init__()
self.tohr_enc2x = Conv2dIBNormRelu(enc_channels[0], hr_channels, 1, stride=1, padding=0)
self.conv_enc2x = Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=2, padding=1)
self.tohr_enc4x = Conv2dIBNormRelu(enc_channels[1], hr_channels, 1, stride=1, padding=0)
self.conv_enc4x = Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1)
self.conv_hr4x = nn.Sequential(
Conv2dIBNormRelu(3 * hr_channels + 3, 2 * hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
)
self.conv_hr2x = nn.Sequential(
Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
)
self.conv_hr = nn.Sequential(
Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(hr_channels, 1, kernel_size=1, stride=1, padding=0, with_ibn=False, with_relu=False),
)
def forward(self, img, enc2x, enc4x, lr8x):
img2x = F.interpolate(img, scale_factor=1/2, mode='bilinear', align_corners=False)
img4x = F.interpolate(img, scale_factor=1/4, mode='bilinear', align_corners=False)
enc2x = self.tohr_enc2x(enc2x)
hr4x = self.conv_enc2x(torch.cat((img2x, enc2x), dim=1))
enc4x = self.tohr_enc4x(enc4x)
hr4x = self.conv_enc4x(torch.cat((hr4x, enc4x), dim=1))
lr4x = F.interpolate(lr8x, scale_factor=2.0, mode='bilinear', align_corners=False)
hr4x = self.conv_hr4x(torch.cat((hr4x, lr4x, img4x), dim=1))
hr2x = F.interpolate(hr4x, scale_factor=2.0, mode='bilinear', align_corners=False)
hr2x = self.conv_hr2x(torch.cat((hr2x, enc2x), dim=1))
return hr2x
class FusionBranch(nn.Module):
""" Fusion Branch of MODNet
"""
def __init__(self, hr_channels, enc_channels):
super(FusionBranch, self).__init__()
self.conv_lr4x = Conv2dIBNormRelu(enc_channels[2], hr_channels, 5, stride=1, padding=2)
self.conv_f2x = Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1)
self.conv_f = nn.Sequential(
Conv2dIBNormRelu(hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
Conv2dIBNormRelu(int(hr_channels / 2), 1, 1, stride=1, padding=0, with_ibn=False, with_relu=False),
)
def forward(self, img, lr8x, hr2x):
lr4x = F.interpolate(lr8x, scale_factor=2.0, mode='bilinear', align_corners=False)
lr4x = self.conv_lr4x(lr4x)
lr2x = F.interpolate(lr4x, scale_factor=2.0, mode='bilinear', align_corners=False)
f2x = self.conv_f2x(torch.cat((lr2x, hr2x), dim=1))
f = F.interpolate(f2x, scale_factor=2.0, mode='bilinear', align_corners=False)
f = self.conv_f(torch.cat((f, img), dim=1))
pred_matte = torch.sigmoid(f)
return pred_matte
#------------------------------------------------------------------------------
# MODNet
#------------------------------------------------------------------------------
class MODNet(nn.Module):
""" Architecture of MODNet
"""
def __init__(self, in_channels=3, hr_channels=32, backbone_arch='mobilenetv2', backbone_pretrained=True):
super(MODNet, self).__init__()
self.in_channels = in_channels
self.hr_channels = hr_channels
self.backbone_arch = backbone_arch
self.backbone_pretrained = backbone_pretrained
self.backbone = SUPPORTED_BACKBONES[self.backbone_arch](self.in_channels)
self.lr_branch = LRBranch(self.backbone)
self.hr_branch = HRBranch(self.hr_channels, self.backbone.enc_channels)
self.f_branch = FusionBranch(self.hr_channels, self.backbone.enc_channels)
for m in self.modules():
if isinstance(m, nn.Conv2d):
self._init_conv(m)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
self._init_norm(m)
if self.backbone_pretrained:
self.backbone.load_pretrained_ckpt()
def forward(self, img):
# NOTE
lr_out = self.lr_branch(img)
lr8x = lr_out[0]
enc2x = lr_out[1]
enc4x = lr_out[2]
hr2x = self.hr_branch(img, enc2x, enc4x, lr8x)
pred_matte = self.f_branch(img, lr8x, hr2x)
return pred_matte
def freeze_norm(self):
norm_types = [nn.BatchNorm2d, nn.InstanceNorm2d]
for m in self.modules():
for n in norm_types:
if isinstance(m, n):
m.eval()
continue
def _init_conv(self, conv):
nn.init.kaiming_uniform_(
conv.weight, a=0, mode='fan_in', nonlinearity='relu')
if conv.bias is not None:
nn.init.constant_(conv.bias, 0)
def _init_norm(self, norm):
if norm.weight is not None:
nn.init.constant_(norm.weight, 1)
nn.init.constant_(norm.bias, 0)