mirror of https://github.com/ZHKKKe/MODNet.git
support TorchScript
parent
fe1e82c65d
commit
5da2bb6c81
11
README.md
11
README.md
|
|
@ -20,6 +20,7 @@ WebCam Video Demo [<a href="demo/video_matting/webcam">Offline</a>][<a href="htt
|
||||||
|
|
||||||
|
|
||||||
## News
|
## News
|
||||||
|
- [Mar 12 2021] Add [TorchScript version](torchscript) of MODNet (from the community).
|
||||||
- [Feb 19 2021] Add [ONNX version](onnx) of MODNet (from the community).
|
- [Feb 19 2021] Add [ONNX version](onnx) of MODNet (from the community).
|
||||||
- [Jan 28 2021] Release the [code](src/trainer.py) of MODNet training iteration.
|
- [Jan 28 2021] Release the [code](src/trainer.py) of MODNet training iteration.
|
||||||
- [Dec 25 2020] ***Merry Christmas!*** :christmas_tree: Release Custom Video Matting Demo [[Offline](demo/video_matting/custom)] for user videos.
|
- [Dec 25 2020] ***Merry Christmas!*** :christmas_tree: Release Custom Video Matting Demo [[Offline](demo/video_matting/custom)] for user videos.
|
||||||
|
|
@ -45,10 +46,10 @@ It allows you to upload portrait images and predict/visualize/download the alpha
|
||||||
|
|
||||||
|
|
||||||
### Community
|
### Community
|
||||||
Here we share some cool applications of MODNet built by the community.
|
Here we share some cool applications/extentions of MODNet built by the community.
|
||||||
|
|
||||||
- **WebGUI for Image Matting**
|
- **WebGUI for Image Matting**
|
||||||
You can try [this WebGUI](https://gradio.app/g/modnet) (hosted on [Gradio](https://www.gradio.app/)) for portrait matting from your browser without any code!
|
You can try [this WebGUI](https://gradio.app/g/modnet) (hosted on [Gradio](https://www.gradio.app/)) for portrait matting from your browser without code!
|
||||||
<!-- <img src="https://i.ibb.co/9gLxFXF/modnet.gif" width='40%'> -->
|
<!-- <img src="https://i.ibb.co/9gLxFXF/modnet.gif" width='40%'> -->
|
||||||
|
|
||||||
- **Colab Demo of Bokeh (Blur Background)**
|
- **Colab Demo of Bokeh (Blur Background)**
|
||||||
|
|
@ -57,6 +58,10 @@ You can try [this Colab demo](https://colab.research.google.com/github/eyaler/av
|
||||||
- **ONNX Version of MODNet**
|
- **ONNX Version of MODNet**
|
||||||
You can convert the pre-trained MODNet to an ONNX model by using [this code](onnx) (provided by [@manthan3C273](https://github.com/manthan3C273)). You can also try [this Colab demo](https://colab.research.google.com/drive/1P3cWtg8fnmu9karZHYDAtmm1vj1rgA-f?usp=sharing) for MODNet image matting (ONNX version).
|
You can convert the pre-trained MODNet to an ONNX model by using [this code](onnx) (provided by [@manthan3C273](https://github.com/manthan3C273)). You can also try [this Colab demo](https://colab.research.google.com/drive/1P3cWtg8fnmu9karZHYDAtmm1vj1rgA-f?usp=sharing) for MODNet image matting (ONNX version).
|
||||||
|
|
||||||
|
- **TorchScript Version of MODNet**
|
||||||
|
You can convert the pre-trained MODNet to an TorchScript model by using [this code](torchscript) (provided by [@yarkable](https://github.com/yarkable)).
|
||||||
|
|
||||||
|
|
||||||
## Code
|
## Code
|
||||||
We provide the [code](src/trainer.py) of MODNet training iteration, including:
|
We provide the [code](src/trainer.py) of MODNet training iteration, including:
|
||||||
- **Supervised Training**: Train MODNet on a labeled matting dataset
|
- **Supervised Training**: Train MODNet on a labeled matting dataset
|
||||||
|
|
@ -79,7 +84,7 @@ This project (**code, pre-trained models, demos, *etc.***) is released under the
|
||||||
## Acknowledgement
|
## Acknowledgement
|
||||||
- We thank [City University of Hong Kong](https://www.cityu.edu.hk/) and [SenseTime](https://www.sensetime.com/) for their support to this project.
|
- We thank [City University of Hong Kong](https://www.cityu.edu.hk/) and [SenseTime](https://www.sensetime.com/) for their support to this project.
|
||||||
- We thank
|
- We thank
|
||||||
[the Gradio team](https://github.com/gradio-app/gradio), [@eyaler](https://github.com/eyaler), [@manthan3C273](https://github.com/manthan3C273),
|
[the Gradio team](https://github.com/gradio-app/gradio), [@eyaler](https://github.com/eyaler), [@manthan3C273](https://github.com/manthan3C273), [@yarkable](https://github.com/yarkable),
|
||||||
for their contributions to this repository or their cool applications based on MODNet.
|
for their contributions to this repository or their cool applications based on MODNet.
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -136,17 +136,31 @@ class MobileNetV2(nn.Module):
|
||||||
# Initialize weights
|
# Initialize weights
|
||||||
self._init_weights()
|
self._init_weights()
|
||||||
|
|
||||||
def forward(self, x, feature_names=None):
|
def forward(self, x):
|
||||||
# Stage1
|
# Stage1
|
||||||
x = reduce(lambda x, n: self.features[n](x), list(range(0,2)), x)
|
x = self.features[0](x)
|
||||||
|
x = self.features[1](x)
|
||||||
# Stage2
|
# Stage2
|
||||||
x = reduce(lambda x, n: self.features[n](x), list(range(2,4)), x)
|
x = self.features[2](x)
|
||||||
|
x = self.features[3](x)
|
||||||
# Stage3
|
# Stage3
|
||||||
x = reduce(lambda x, n: self.features[n](x), list(range(4,7)), x)
|
x = self.features[4](x)
|
||||||
|
x = self.features[5](x)
|
||||||
|
x = self.features[6](x)
|
||||||
# Stage4
|
# Stage4
|
||||||
x = reduce(lambda x, n: self.features[n](x), list(range(7,14)), x)
|
x = self.features[7](x)
|
||||||
|
x = self.features[8](x)
|
||||||
|
x = self.features[9](x)
|
||||||
|
x = self.features[10](x)
|
||||||
|
x = self.features[11](x)
|
||||||
|
x = self.features[12](x)
|
||||||
|
x = self.features[13](x)
|
||||||
# Stage5
|
# Stage5
|
||||||
x = reduce(lambda x, n: self.features[n](x), list(range(14,19)), x)
|
x = self.features[14](x)
|
||||||
|
x = self.features[15](x)
|
||||||
|
x = self.features[16](x)
|
||||||
|
x = self.features[17](x)
|
||||||
|
x = self.features[18](x)
|
||||||
|
|
||||||
# Classification
|
# Classification
|
||||||
if self.num_classes is not None:
|
if self.num_classes is not None:
|
||||||
|
|
|
||||||
|
|
@ -36,15 +36,38 @@ class MobileNetV2Backbone(BaseBackbone):
|
||||||
self.enc_channels = [16, 24, 32, 96, 1280]
|
self.enc_channels = [16, 24, 32, 96, 1280]
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
|
# x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
|
||||||
|
x = self.model.features[0](x)
|
||||||
|
x = self.model.features[1](x)
|
||||||
enc2x = x
|
enc2x = x
|
||||||
x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
|
|
||||||
|
# x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
|
||||||
|
x = self.model.features[2](x)
|
||||||
|
x = self.model.features[3](x)
|
||||||
enc4x = x
|
enc4x = x
|
||||||
x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
|
|
||||||
|
# x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
|
||||||
|
x = self.model.features[4](x)
|
||||||
|
x = self.model.features[5](x)
|
||||||
|
x = self.model.features[6](x)
|
||||||
enc8x = x
|
enc8x = x
|
||||||
x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
|
|
||||||
|
# x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
|
||||||
|
x = self.model.features[7](x)
|
||||||
|
x = self.model.features[8](x)
|
||||||
|
x = self.model.features[9](x)
|
||||||
|
x = self.model.features[10](x)
|
||||||
|
x = self.model.features[11](x)
|
||||||
|
x = self.model.features[12](x)
|
||||||
|
x = self.model.features[13](x)
|
||||||
enc16x = x
|
enc16x = x
|
||||||
x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
|
|
||||||
|
# x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
|
||||||
|
x = self.model.features[14](x)
|
||||||
|
x = self.model.features[15](x)
|
||||||
|
x = self.model.features[16](x)
|
||||||
|
x = self.model.features[17](x)
|
||||||
|
x = self.model.features[18](x)
|
||||||
enc32x = x
|
enc32x = x
|
||||||
return [enc2x, enc4x, enc8x, enc16x, enc32x]
|
return [enc2x, enc4x, enc8x, enc16x, enc32x]
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,18 @@
|
||||||
|
## MODNet - TorchScript Model
|
||||||
|
|
||||||
|
This TorchScript version of MODNet is provided by [@yarkable](https://github.com/yarkable) from the community.
|
||||||
|
Please note that the PyTorch version required for this TorchScript export function is higher than the official MODNet code (torch>=1.2.0).
|
||||||
|
|
||||||
|
You can also download the TorchScript version of the official **Image Matting Model** from [this link](https://pan.baidu.com/s/1kOmmmbG7lSZiSmDdE7CaRw) with the exextraction code `dm9e`.
|
||||||
|
|
||||||
|
To export the TorchScript version of MODNet (assuming you are currently in project root directory):
|
||||||
|
1. Download the pre-trained **Image Matting Model** from this [link](https://drive.google.com/drive/folders/1umYmlCulvIFNaqPjwod1SayFmSRHziyR?usp=sharing) and put the model into the folder `MODNet/pretrained/`.
|
||||||
|
|
||||||
|
2. Ensure your PyTorch version >= 1.2.0.
|
||||||
|
|
||||||
|
3. Export the TorchScript version of MODNet by:
|
||||||
|
```shell
|
||||||
|
python -m torchscript.export_torchscript \
|
||||||
|
--ckpt-path=pretrained/modnet_photographic_portrait_matting.ckpt \
|
||||||
|
--output-path=pretrained/modnet_photographic_portrait_matting.torchscript
|
||||||
|
```
|
||||||
|
|
@ -0,0 +1,46 @@
|
||||||
|
"""
|
||||||
|
Export TorchScript model of MODNet
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
--ckpt-path: path of the checkpoint that will be converted
|
||||||
|
--output-path: path for saving the TorchScript model
|
||||||
|
|
||||||
|
Example:
|
||||||
|
python export_torchscript.py \
|
||||||
|
--ckpt-path=modnet_photographic_portrait_matting.ckpt \
|
||||||
|
--output-path=modnet_photographic_portrait_matting.torchscript
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from . import modnet_torchscript
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# define cmd arguments
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--ckpt-path', type=str, required=True, help='path of the checkpoint that will be converted')
|
||||||
|
parser.add_argument('--output-path', type=str, required=True, help='path for saving the TorchScript model')
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# check input arguments
|
||||||
|
if not os.path.exists(args.ckpt_path):
|
||||||
|
print(args.ckpt_path)
|
||||||
|
print('Cannot find checkpoint path: {0}'.format(args.ckpt_path))
|
||||||
|
exit()
|
||||||
|
|
||||||
|
# create MODNet and load the pre-trained ckpt
|
||||||
|
modnet = modnet_torchscript.MODNet(backbone_pretrained=False)
|
||||||
|
modnet = nn.DataParallel(modnet).cuda()
|
||||||
|
state_dict = torch.load(args.ckpt_path)
|
||||||
|
modnet.load_state_dict(state_dict)
|
||||||
|
modnet.eval()
|
||||||
|
|
||||||
|
# export to TorchScript model
|
||||||
|
scripted_model = torch.jit.script(modnet.module)
|
||||||
|
torch.jit.save(scripted_model, os.path.join(args.output_path))
|
||||||
|
|
@ -0,0 +1,258 @@
|
||||||
|
"""
|
||||||
|
This file contains a modified version of the original file `modnet.py` without
|
||||||
|
`pred_semantic` and `pred_details` as these both returns None when `inference=True`
|
||||||
|
|
||||||
|
And it does not contain `inference` argument which will make it easier to
|
||||||
|
convert checkpoint to TorchScript model.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from src.models.backbones import SUPPORTED_BACKBONES
|
||||||
|
|
||||||
|
|
||||||
|
#------------------------------------------------------------------------------
|
||||||
|
# MODNet Basic Modules
|
||||||
|
#------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
class IBNorm(nn.Module):
|
||||||
|
""" Combine Instance Norm and Batch Norm into One Layer
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, in_channels):
|
||||||
|
super(IBNorm, self).__init__()
|
||||||
|
in_channels = in_channels
|
||||||
|
self.bnorm_channels = int(in_channels / 2)
|
||||||
|
self.inorm_channels = in_channels - self.bnorm_channels
|
||||||
|
|
||||||
|
self.bnorm = nn.BatchNorm2d(self.bnorm_channels, affine=True)
|
||||||
|
self.inorm = nn.InstanceNorm2d(self.inorm_channels, affine=False)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
bn_x = self.bnorm(x[:, :self.bnorm_channels, ...].contiguous())
|
||||||
|
in_x = self.inorm(x[:, self.bnorm_channels:, ...].contiguous())
|
||||||
|
|
||||||
|
return torch.cat((bn_x, in_x), 1)
|
||||||
|
|
||||||
|
|
||||||
|
class Conv2dIBNormRelu(nn.Module):
|
||||||
|
""" Convolution + IBNorm + ReLu
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, in_channels, out_channels, kernel_size,
|
||||||
|
stride=1, padding=0, dilation=1, groups=1, bias=True,
|
||||||
|
with_ibn=True, with_relu=True):
|
||||||
|
super(Conv2dIBNormRelu, self).__init__()
|
||||||
|
|
||||||
|
layers = [
|
||||||
|
nn.Conv2d(in_channels, out_channels, kernel_size,
|
||||||
|
stride=stride, padding=padding, dilation=dilation,
|
||||||
|
groups=groups, bias=bias)
|
||||||
|
]
|
||||||
|
|
||||||
|
if with_ibn:
|
||||||
|
layers.append(IBNorm(out_channels))
|
||||||
|
if with_relu:
|
||||||
|
layers.append(nn.ReLU(inplace=True))
|
||||||
|
|
||||||
|
self.layers = nn.Sequential(*layers)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.layers(x)
|
||||||
|
|
||||||
|
|
||||||
|
class SEBlock(nn.Module):
|
||||||
|
""" SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, in_channels, out_channels, reduction=1):
|
||||||
|
super(SEBlock, self).__init__()
|
||||||
|
self.pool = nn.AdaptiveAvgPool2d(1)
|
||||||
|
self.fc = nn.Sequential(
|
||||||
|
nn.Linear(in_channels, int(in_channels // reduction), bias=False),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
nn.Linear(int(in_channels // reduction), out_channels, bias=False),
|
||||||
|
nn.Sigmoid()
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
b, c, _, _ = x.size()
|
||||||
|
w = self.pool(x).view(b, c)
|
||||||
|
w = self.fc(w).view(b, c, 1, 1)
|
||||||
|
|
||||||
|
return x * w.expand_as(x)
|
||||||
|
|
||||||
|
|
||||||
|
#------------------------------------------------------------------------------
|
||||||
|
# MODNet Branches
|
||||||
|
#------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
class LRBranch(nn.Module):
|
||||||
|
""" Low Resolution Branch of MODNet
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, backbone):
|
||||||
|
super(LRBranch, self).__init__()
|
||||||
|
|
||||||
|
enc_channels = backbone.enc_channels
|
||||||
|
|
||||||
|
self.backbone = backbone
|
||||||
|
self.se_block = SEBlock(enc_channels[4], enc_channels[4], reduction=4)
|
||||||
|
self.conv_lr16x = Conv2dIBNormRelu(enc_channels[4], enc_channels[3], 5, stride=1, padding=2)
|
||||||
|
self.conv_lr8x = Conv2dIBNormRelu(enc_channels[3], enc_channels[2], 5, stride=1, padding=2)
|
||||||
|
self.conv_lr = Conv2dIBNormRelu(enc_channels[2], 1, kernel_size=3, stride=2, padding=1, with_ibn=False, with_relu=False)
|
||||||
|
|
||||||
|
def forward(self, img):
|
||||||
|
enc_features = self.backbone.forward(img)
|
||||||
|
enc2x, enc4x, enc32x = enc_features[0], enc_features[1], enc_features[4]
|
||||||
|
|
||||||
|
enc32x = self.se_block(enc32x)
|
||||||
|
lr16x = F.interpolate(enc32x, scale_factor=2.0, mode='bilinear', align_corners=False)
|
||||||
|
lr16x = self.conv_lr16x(lr16x)
|
||||||
|
lr8x = F.interpolate(lr16x, scale_factor=2.0, mode='bilinear', align_corners=False)
|
||||||
|
lr8x = self.conv_lr8x(lr8x)
|
||||||
|
|
||||||
|
return lr8x, enc2x, enc4x
|
||||||
|
|
||||||
|
|
||||||
|
class HRBranch(nn.Module):
|
||||||
|
""" High Resolution Branch of MODNet
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, hr_channels, enc_channels):
|
||||||
|
super(HRBranch, self).__init__()
|
||||||
|
|
||||||
|
self.tohr_enc2x = Conv2dIBNormRelu(enc_channels[0], hr_channels, 1, stride=1, padding=0)
|
||||||
|
self.conv_enc2x = Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=2, padding=1)
|
||||||
|
|
||||||
|
self.tohr_enc4x = Conv2dIBNormRelu(enc_channels[1], hr_channels, 1, stride=1, padding=0)
|
||||||
|
self.conv_enc4x = Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1)
|
||||||
|
|
||||||
|
self.conv_hr4x = nn.Sequential(
|
||||||
|
Conv2dIBNormRelu(3 * hr_channels + 3, 2 * hr_channels, 3, stride=1, padding=1),
|
||||||
|
Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
|
||||||
|
Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.conv_hr2x = nn.Sequential(
|
||||||
|
Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
|
||||||
|
Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
|
||||||
|
Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
|
||||||
|
Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.conv_hr = nn.Sequential(
|
||||||
|
Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=1, padding=1),
|
||||||
|
Conv2dIBNormRelu(hr_channels, 1, kernel_size=1, stride=1, padding=0, with_ibn=False, with_relu=False),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, img, enc2x, enc4x, lr8x):
|
||||||
|
img2x = F.interpolate(img, scale_factor=1/2, mode='bilinear', align_corners=False)
|
||||||
|
img4x = F.interpolate(img, scale_factor=1/4, mode='bilinear', align_corners=False)
|
||||||
|
|
||||||
|
enc2x = self.tohr_enc2x(enc2x)
|
||||||
|
hr4x = self.conv_enc2x(torch.cat((img2x, enc2x), dim=1))
|
||||||
|
|
||||||
|
enc4x = self.tohr_enc4x(enc4x)
|
||||||
|
hr4x = self.conv_enc4x(torch.cat((hr4x, enc4x), dim=1))
|
||||||
|
|
||||||
|
lr4x = F.interpolate(lr8x, scale_factor=2.0, mode='bilinear', align_corners=False)
|
||||||
|
hr4x = self.conv_hr4x(torch.cat((hr4x, lr4x, img4x), dim=1))
|
||||||
|
|
||||||
|
hr2x = F.interpolate(hr4x, scale_factor=2.0, mode='bilinear', align_corners=False)
|
||||||
|
hr2x = self.conv_hr2x(torch.cat((hr2x, enc2x), dim=1))
|
||||||
|
|
||||||
|
return hr2x
|
||||||
|
|
||||||
|
|
||||||
|
class FusionBranch(nn.Module):
|
||||||
|
""" Fusion Branch of MODNet
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, hr_channels, enc_channels):
|
||||||
|
super(FusionBranch, self).__init__()
|
||||||
|
self.conv_lr4x = Conv2dIBNormRelu(enc_channels[2], hr_channels, 5, stride=1, padding=2)
|
||||||
|
|
||||||
|
self.conv_f2x = Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1)
|
||||||
|
self.conv_f = nn.Sequential(
|
||||||
|
Conv2dIBNormRelu(hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
|
||||||
|
Conv2dIBNormRelu(int(hr_channels / 2), 1, 1, stride=1, padding=0, with_ibn=False, with_relu=False),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, img, lr8x, hr2x):
|
||||||
|
lr4x = F.interpolate(lr8x, scale_factor=2.0, mode='bilinear', align_corners=False)
|
||||||
|
lr4x = self.conv_lr4x(lr4x)
|
||||||
|
lr2x = F.interpolate(lr4x, scale_factor=2.0, mode='bilinear', align_corners=False)
|
||||||
|
|
||||||
|
f2x = self.conv_f2x(torch.cat((lr2x, hr2x), dim=1))
|
||||||
|
f = F.interpolate(f2x, scale_factor=2.0, mode='bilinear', align_corners=False)
|
||||||
|
f = self.conv_f(torch.cat((f, img), dim=1))
|
||||||
|
pred_matte = torch.sigmoid(f)
|
||||||
|
|
||||||
|
return pred_matte
|
||||||
|
|
||||||
|
|
||||||
|
#------------------------------------------------------------------------------
|
||||||
|
# MODNet
|
||||||
|
#------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
class MODNet(nn.Module):
|
||||||
|
""" Architecture of MODNet
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, in_channels=3, hr_channels=32, backbone_arch='mobilenetv2', backbone_pretrained=True):
|
||||||
|
super(MODNet, self).__init__()
|
||||||
|
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.hr_channels = hr_channels
|
||||||
|
self.backbone_arch = backbone_arch
|
||||||
|
self.backbone_pretrained = backbone_pretrained
|
||||||
|
|
||||||
|
self.backbone = SUPPORTED_BACKBONES[self.backbone_arch](self.in_channels)
|
||||||
|
|
||||||
|
self.lr_branch = LRBranch(self.backbone)
|
||||||
|
self.hr_branch = HRBranch(self.hr_channels, self.backbone.enc_channels)
|
||||||
|
self.f_branch = FusionBranch(self.hr_channels, self.backbone.enc_channels)
|
||||||
|
|
||||||
|
for m in self.modules():
|
||||||
|
if isinstance(m, nn.Conv2d):
|
||||||
|
self._init_conv(m)
|
||||||
|
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
|
||||||
|
self._init_norm(m)
|
||||||
|
|
||||||
|
if self.backbone_pretrained:
|
||||||
|
self.backbone.load_pretrained_ckpt()
|
||||||
|
|
||||||
|
def forward(self, img):
|
||||||
|
# NOTE
|
||||||
|
lr_out = self.lr_branch(img)
|
||||||
|
lr8x = lr_out[0]
|
||||||
|
enc2x = lr_out[1]
|
||||||
|
enc4x = lr_out[2]
|
||||||
|
|
||||||
|
hr2x = self.hr_branch(img, enc2x, enc4x, lr8x)
|
||||||
|
|
||||||
|
pred_matte = self.f_branch(img, lr8x, hr2x)
|
||||||
|
|
||||||
|
return pred_matte
|
||||||
|
|
||||||
|
def freeze_norm(self):
|
||||||
|
norm_types = [nn.BatchNorm2d, nn.InstanceNorm2d]
|
||||||
|
for m in self.modules():
|
||||||
|
for n in norm_types:
|
||||||
|
if isinstance(m, n):
|
||||||
|
m.eval()
|
||||||
|
continue
|
||||||
|
|
||||||
|
def _init_conv(self, conv):
|
||||||
|
nn.init.kaiming_uniform_(
|
||||||
|
conv.weight, a=0, mode='fan_in', nonlinearity='relu')
|
||||||
|
if conv.bias is not None:
|
||||||
|
nn.init.constant_(conv.bias, 0)
|
||||||
|
|
||||||
|
def _init_norm(self, norm):
|
||||||
|
if norm.weight is not None:
|
||||||
|
nn.init.constant_(norm.weight, 1)
|
||||||
|
nn.init.constant_(norm.bias, 0)
|
||||||
Loading…
Reference in New Issue