mirror of https://github.com/ZHKKKe/MODNet.git
undo whitespace changes
parent
67a565bcd1
commit
f95e1236bc
|
|
@ -26,7 +26,7 @@ class BaseBackbone(nn.Module):
|
|||
|
||||
|
||||
class MobileNetV2Backbone(BaseBackbone):
|
||||
""" MobileNetV2 Backbone
|
||||
""" MobileNetV2 Backbone
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels):
|
||||
|
|
@ -72,11 +72,11 @@ class MobileNetV2Backbone(BaseBackbone):
|
|||
return [enc2x, enc4x, enc8x, enc16x, enc32x]
|
||||
|
||||
def load_pretrained_ckpt(self):
|
||||
# the pre-trained model is provided by https://github.com/thuyngch/Human-Segmentation-PyTorch
|
||||
# the pre-trained model is provided by https://github.com/thuyngch/Human-Segmentation-PyTorch
|
||||
ckpt_path = './pretrained/mobilenetv2_human_seg.ckpt'
|
||||
if not os.path.exists(ckpt_path):
|
||||
print('cannot find the pretrained mobilenetv2 backbone')
|
||||
exit()
|
||||
|
||||
|
||||
ckpt = torch.load(ckpt_path)
|
||||
self.model.load_state_dict(ckpt)
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ class IBNorm(nn.Module):
|
|||
|
||||
self.bnorm = nn.BatchNorm2d(self.bnorm_channels, affine=True)
|
||||
self.inorm = nn.InstanceNorm2d(self.inorm_channels, affine=False)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
bn_x = self.bnorm(x[:, :self.bnorm_channels, ...].contiguous())
|
||||
in_x = self.inorm(x[:, self.bnorm_channels:, ...].contiguous())
|
||||
|
|
@ -33,18 +33,18 @@ class Conv2dIBNormRelu(nn.Module):
|
|||
""" Convolution + IBNorm + ReLu
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size,
|
||||
stride=1, padding=0, dilation=1, groups=1, bias=True,
|
||||
def __init__(self, in_channels, out_channels, kernel_size,
|
||||
stride=1, padding=0, dilation=1, groups=1, bias=True,
|
||||
with_ibn=True, with_relu=True):
|
||||
super(Conv2dIBNormRelu, self).__init__()
|
||||
|
||||
layers = [
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size,
|
||||
stride=stride, padding=padding, dilation=dilation,
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size,
|
||||
stride=stride, padding=padding, dilation=dilation,
|
||||
groups=groups, bias=bias)
|
||||
]
|
||||
|
||||
if with_ibn:
|
||||
if with_ibn:
|
||||
layers.append(IBNorm(out_channels))
|
||||
if with_relu:
|
||||
layers.append(nn.ReLU(inplace=True))
|
||||
|
|
@ -52,7 +52,7 @@ class Conv2dIBNormRelu(nn.Module):
|
|||
self.layers = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
return self.layers(x)
|
||||
|
||||
|
||||
class SEBlock(nn.Module):
|
||||
|
|
@ -89,7 +89,7 @@ class LRBranch(nn.Module):
|
|||
super(LRBranch, self).__init__()
|
||||
|
||||
enc_channels = backbone.enc_channels
|
||||
|
||||
|
||||
self.backbone = backbone
|
||||
self.se_block = SEBlock(enc_channels[4], enc_channels[4], reduction=4)
|
||||
self.conv_lr16x = Conv2dIBNormRelu(enc_channels[4], enc_channels[3], 5, stride=1, padding=2)
|
||||
|
|
@ -111,7 +111,7 @@ class LRBranch(nn.Module):
|
|||
lr = self.conv_lr(lr8x)
|
||||
pred_semantic = torch.sigmoid(lr)
|
||||
|
||||
return pred_semantic, lr8x, [enc2x, enc4x]
|
||||
return pred_semantic, lr8x, [enc2x, enc4x]
|
||||
|
||||
|
||||
class HRBranch(nn.Module):
|
||||
|
|
@ -177,7 +177,7 @@ class FusionBranch(nn.Module):
|
|||
def __init__(self, hr_channels, enc_channels):
|
||||
super(FusionBranch, self).__init__()
|
||||
self.conv_lr4x = Conv2dIBNormRelu(enc_channels[2], hr_channels, 5, stride=1, padding=2)
|
||||
|
||||
|
||||
self.conv_f2x = Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1)
|
||||
self.conv_f = nn.Sequential(
|
||||
Conv2dIBNormRelu(hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
|
||||
|
|
@ -226,7 +226,7 @@ class MODNet(nn.Module):
|
|||
self._init_norm(m)
|
||||
|
||||
if self.backbone_pretrained:
|
||||
self.backbone.load_pretrained_ckpt()
|
||||
self.backbone.load_pretrained_ckpt()
|
||||
|
||||
def forward(self, img, inference):
|
||||
pred_semantic, lr8x, [enc2x, enc4x] = self.lr_branch(img, inference)
|
||||
|
|
@ -234,7 +234,7 @@ class MODNet(nn.Module):
|
|||
pred_matte = self.f_branch(img, lr8x, hr2x)
|
||||
|
||||
return pred_semantic, pred_detail, pred_matte
|
||||
|
||||
|
||||
def freeze_norm(self):
|
||||
norm_types = [nn.BatchNorm2d, nn.InstanceNorm2d]
|
||||
for m in self.modules():
|
||||
|
|
|
|||
Loading…
Reference in New Issue