From feb9efdfb6f1a16800b2880ee3e2dec37e94ae29 Mon Sep 17 00:00:00 2001 From: Zhanghan Ke Date: Fri, 5 Mar 2021 11:32:19 +0800 Subject: [PATCH] Revert "Merge TorchScript Version (#76)" This reverts commit 26cae0fe0383bce1dd9b7382740de8116dad4f41. --- TorchScript/README.md | 12 -- TorchScript/__init__.py | 0 TorchScript/export_torchscript.py | 42 ------ TorchScript/modnet_torchscript.py | 275 ------------------------------------ src/models/backbones/mobilenetv2.py | 26 +--- src/models/backbones/wrapper.py | 33 +---- 6 files changed, 11 insertions(+), 377 deletions(-) delete mode 100644 TorchScript/README.md delete mode 100644 TorchScript/__init__.py delete mode 100644 TorchScript/export_torchscript.py delete mode 100644 TorchScript/modnet_torchscript.py diff --git a/TorchScript/README.md b/TorchScript/README.md deleted file mode 100644 index 5233420..0000000 --- a/TorchScript/README.md +++ /dev/null @@ -1,12 +0,0 @@ -## Usage: - -```shell - -python export_torchscript.py \ - --ckpt-path pretrained/modnet_photographic_portrait_matting.ckpt\ - --out-dir scripted_model -``` - -## Official TorchScript model: - -[BaiduCloudDisk](https://pan.baidu.com/s/1kOmmmbG7lSZiSmDdE7CaRw), extract_code=dm9e \ No newline at end of file diff --git a/TorchScript/__init__.py b/TorchScript/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/TorchScript/export_torchscript.py b/TorchScript/export_torchscript.py deleted file mode 100644 index ccae1a7..0000000 --- a/TorchScript/export_torchscript.py +++ /dev/null @@ -1,42 +0,0 @@ -import os -import argparse -import torch -import torch.nn as nn -import torch.nn.functional as F -from collections import OrderedDict -from . import modnet_torchscript - -if __name__ == '__main__': - - parser = argparse.ArgumentParser() - parser.add_argument('--ckpt-path', type=str, help='path of pre-trained MODNet') - parser.add_argument('--out-dir', type=str, required=True, help='path for saving the TorchScript model') - args = parser.parse_args() - - # check input arguments - if not os.path.exists(args.ckpt_path): - print('Cannot find checkpoint path: {0}'.format(args.ckpt_path)) - exit() - - if not os.path.exists(args.out_dir): - os.mkdir(args.out_dir) - - # create MODNet and load the pre-trained ckpt - modnet = MODNet(backbone_pretrained=True) - # modnet = nn.DataParallel(modnet).cuda() - modnet = modnet.cuda() - ckpt = torch.load(args.ckpt) - - # if use more than one GPU - if 'module.' in ckpt.keys(): - ckpt = OrderedDict() - for k, v in ckpt.items(): - k = k.replace('module.', '') - ckpt[k] = v - - modnet.load_state_dict(ckpt) - modnet.eval() - - scripted_model = torch.jit.script(modnet) - torch.jit.save(scripted_model, os.path.join(args.out_dir,'modnet.pt')) - diff --git a/TorchScript/modnet_torchscript.py b/TorchScript/modnet_torchscript.py deleted file mode 100644 index 3df13e5..0000000 --- a/TorchScript/modnet_torchscript.py +++ /dev/null @@ -1,275 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F - -# from .backbones import SUPPORTED_BACKBONES -from .backbones import SUPPORTED_BACKBONES - - -#------------------------------------------------------------------------------ -# MODNet Basic Modules -#------------------------------------------------------------------------------ - -class IBNorm(nn.Module): - """ Combine Instance Norm and Batch Norm into One Layer - 对一半channel做BN,一半做IN - """ - - def __init__(self, in_channels): - super(IBNorm, self).__init__() - in_channels = in_channels - self.bnorm_channels = int(in_channels / 2) - self.inorm_channels = in_channels - self.bnorm_channels - - self.bnorm = nn.BatchNorm2d(self.bnorm_channels, affine=True) - self.inorm = nn.InstanceNorm2d(self.inorm_channels, affine=False) - - def forward(self, x): - bn_x = self.bnorm(x[:, :self.bnorm_channels, ...].contiguous()) - in_x = self.inorm(x[:, self.bnorm_channels:, ...].contiguous()) - - return torch.cat((bn_x, in_x), 1) - - -class Conv2dIBNormRelu(nn.Module): - """ Convolution + IBNorm + ReLu - """ - - def __init__(self, in_channels, out_channels, kernel_size, - stride=1, padding=0, dilation=1, groups=1, bias=True, - with_ibn=True, with_relu=True): - super(Conv2dIBNormRelu, self).__init__() - - layers = [ - nn.Conv2d(in_channels, out_channels, kernel_size, - stride=stride, padding=padding, dilation=dilation, - groups=groups, bias=bias) - ] - - if with_ibn: - layers.append(IBNorm(out_channels)) - if with_relu: - layers.append(nn.ReLU(inplace=True)) - - self.layers = nn.Sequential(*layers) - - def forward(self, x): - return self.layers(x) - - -class SEBlock(nn.Module): - """ SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf - 通道 Attention - """ - - def __init__(self, in_channels, out_channels, reduction=1): - super(SEBlock, self).__init__() - self.pool = nn.AdaptiveAvgPool2d(1) - self.fc = nn.Sequential( - nn.Linear(in_channels, int(in_channels // reduction), bias=False), - nn.ReLU(inplace=True), - nn.Linear(int(in_channels // reduction), out_channels, bias=False), - nn.Sigmoid() - ) - - def forward(self, x): - b, c, _, _ = x.size() - w = self.pool(x).view(b, c) - w = self.fc(w).view(b, c, 1, 1) - - return x * w.expand_as(x) - - -#------------------------------------------------------------------------------ -# MODNet Branches -#------------------------------------------------------------------------------ - -class LRBranch(nn.Module): - """ Low Resolution Branch of MODNet - """ - - def __init__(self, backbone): - super(LRBranch, self).__init__() - - enc_channels = backbone.enc_channels - # ==> self.enc_channels = [16, 24, 32, 96, 1280] - - self.backbone = backbone - self.se_block = SEBlock(enc_channels[4], enc_channels[4], reduction=4) - self.conv_lr16x = Conv2dIBNormRelu(enc_channels[4], enc_channels[3], 5, stride=1, padding=2) - self.conv_lr8x = Conv2dIBNormRelu(enc_channels[3], enc_channels[2], 5, stride=1, padding=2) - self.conv_lr = Conv2dIBNormRelu(enc_channels[2], 1, kernel_size=3, stride=2, padding=1, with_ibn=False, with_relu=False) - - def forward(self, img, inference): - enc_features = self.backbone.forward(img) - enc2x, enc4x, enc32x = enc_features[0], enc_features[1], enc_features[4] - - # 对最后一层进行通道注意力 - enc32x = self.se_block(enc32x) - # 再上采样4倍 - lr16x = F.interpolate(enc32x, scale_factor=2.0, mode='bilinear', align_corners=False) - lr16x = self.conv_lr16x(lr16x) - lr8x = F.interpolate(lr16x, scale_factor=2.0, mode='bilinear', align_corners=False) - lr8x = self.conv_lr8x(lr8x) - - pred_semantic = torch.tensor([]) # None - if not inference: - lr = self.conv_lr(lr8x) - pred_semantic = torch.sigmoid(lr) - - return pred_semantic, lr8x, [enc2x, enc4x] - - -class HRBranch(nn.Module): - """ High Resolution Branch of MODNet - """ - - def __init__(self, hr_channels, enc_channels): - super(HRBranch, self).__init__() - - self.tohr_enc2x = Conv2dIBNormRelu(enc_channels[0], hr_channels, 1, stride=1, padding=0) - self.conv_enc2x = Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=2, padding=1) - - self.tohr_enc4x = Conv2dIBNormRelu(enc_channels[1], hr_channels, 1, stride=1, padding=0) - self.conv_enc4x = Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1) - - self.conv_hr4x = nn.Sequential( - Conv2dIBNormRelu(3 * hr_channels + 3, 2 * hr_channels, 3, stride=1, padding=1), - Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1), - Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1), - ) - - self.conv_hr2x = nn.Sequential( - Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1), - Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1), - Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1), - Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1), - ) - - self.conv_hr = nn.Sequential( - Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=1, padding=1), - Conv2dIBNormRelu(hr_channels, 1, kernel_size=1, stride=1, padding=0, with_ibn=False, with_relu=False), - ) - - def forward(self, img, enc2x, enc4x, lr8x, inference): - img2x = F.interpolate(img, scale_factor=1/2, mode='bilinear', align_corners=False) - img4x = F.interpolate(img, scale_factor=1/4, mode='bilinear', align_corners=False) - - enc2x = self.tohr_enc2x(enc2x) - # 把原图叠加到通道上 - hr4x = self.conv_enc2x(torch.cat((img2x, enc2x), dim=1)) - - # 把两个 featmap 连接 - enc4x = self.tohr_enc4x(enc4x) - hr4x = self.conv_enc4x(torch.cat((hr4x, enc4x), dim=1)) - - lr4x = F.interpolate(lr8x, scale_factor=2.0, mode='bilinear', align_corners=False) - hr4x = self.conv_hr4x(torch.cat((hr4x, lr4x, img4x), dim=1)) - - hr2x = F.interpolate(hr4x, scale_factor=2.0, mode='bilinear', align_corners=False) - hr2x = self.conv_hr2x(torch.cat((hr2x, enc2x), dim=1)) - - pred_detail = torch.tensor([]) # None - if not inference: - hr = F.interpolate(hr2x, scale_factor=2.0, mode='bilinear', align_corners=False) - hr = self.conv_hr(torch.cat((hr, img), dim=1)) - pred_detail = torch.sigmoid(hr) - - return pred_detail, hr2x - - -class FusionBranch(nn.Module): - """ Fusion Branch of MODNet - """ - - def __init__(self, hr_channels, enc_channels): - super(FusionBranch, self).__init__() - self.conv_lr4x = Conv2dIBNormRelu(enc_channels[2], hr_channels, 5, stride=1, padding=2) - - self.conv_f2x = Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1) - self.conv_f = nn.Sequential( - Conv2dIBNormRelu(hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1), - Conv2dIBNormRelu(int(hr_channels / 2), 1, 1, stride=1, padding=0, with_ibn=False, with_relu=False), - ) - - def forward(self, img, lr8x, hr2x): - lr4x = F.interpolate(lr8x, scale_factor=2.0, mode='bilinear', align_corners=False) - lr4x = self.conv_lr4x(lr4x) - lr2x = F.interpolate(lr4x, scale_factor=2.0, mode='bilinear', align_corners=False) - - f2x = self.conv_f2x(torch.cat((lr2x, hr2x), dim=1)) - f = F.interpolate(f2x, scale_factor=2.0, mode='bilinear', align_corners=False) - f = self.conv_f(torch.cat((f, img), dim=1)) - pred_matte = torch.sigmoid(f) - - return pred_matte - - -#------------------------------------------------------------------------------ -# MODNet -#------------------------------------------------------------------------------ - -class MODNet(nn.Module): - """ Architecture of MODNet - """ - - def __init__(self, in_channels=3, hr_channels=32, backbone_arch='mobilenetv2', backbone_pretrained=True): - super(MODNet, self).__init__() - - self.in_channels = in_channels - self.hr_channels = hr_channels - self.backbone_arch = backbone_arch - self.backbone_pretrained = backbone_pretrained - - self.backbone = SUPPORTED_BACKBONES[self.backbone_arch](self.in_channels) - - self.lr_branch = LRBranch(self.backbone) - self.hr_branch = HRBranch(self.hr_channels, self.backbone.enc_channels) - self.f_branch = FusionBranch(self.hr_channels, self.backbone.enc_channels) - - for m in self.modules(): - if isinstance(m, nn.Conv2d): - self._init_conv(m) - elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d): - self._init_norm(m) - - if self.backbone_pretrained: - self.backbone.load_pretrained_ckpt() - - def forward(self, img, inference): - pred_semantic = self.lr_branch(img, inference)[0] - lr8x = self.lr_branch(img, inference)[1] - enc2x = self.lr_branch(img, inference)[2][0] - enc4x = self.lr_branch(img, inference)[2][1] - - pred_detail = self.hr_branch(img, enc2x, enc4x, lr8x, inference)[0] - hr2x = self.hr_branch(img, enc2x, enc4x, lr8x, inference)[1] - - pred_matte = self.f_branch(img, lr8x, hr2x) - - return pred_semantic, pred_detail, pred_matte - - def freeze_norm(self): - norm_types = [nn.BatchNorm2d, nn.InstanceNorm2d] - for m in self.modules(): - for n in norm_types: - if isinstance(m, n): - m.eval() - continue - - def _init_conv(self, conv): - nn.init.kaiming_uniform_( - conv.weight, a=0, mode='fan_in', nonlinearity='relu') - if conv.bias is not None: - nn.init.constant_(conv.bias, 0) - - def _init_norm(self, norm): - if norm.weight is not None: - nn.init.constant_(norm.weight, 1) - nn.init.constant_(norm.bias, 0) - - -if __name__ == "__main__": - IbNorm = IBNorm(20) - out = IbNorm(torch.randn((1,3,224,224))) - print(out.shape) \ No newline at end of file diff --git a/src/models/backbones/mobilenetv2.py b/src/models/backbones/mobilenetv2.py index 709d352..67cc138 100644 --- a/src/models/backbones/mobilenetv2.py +++ b/src/models/backbones/mobilenetv2.py @@ -136,31 +136,17 @@ class MobileNetV2(nn.Module): # Initialize weights self._init_weights() - def forward(self, x): + def forward(self, x, feature_names=None): # Stage1 - x = self.features[0](x) - x = self.features[1](x) + x = reduce(lambda x, n: self.features[n](x), list(range(0,2)), x) # Stage2 - x = self.features[2](x) - x = self.features[3](x) + x = reduce(lambda x, n: self.features[n](x), list(range(2,4)), x) # Stage3 - x = self.features[4](x) - x = self.features[5](x) - x = self.features[6](x) + x = reduce(lambda x, n: self.features[n](x), list(range(4,7)), x) # Stage4 - x = self.features[7](x) - x = self.features[8](x) - x = self.features[9](x) - x = self.features[10](x) - x = self.features[11](x) - x = self.features[12](x) - x = self.features[13](x) + x = reduce(lambda x, n: self.features[n](x), list(range(7,14)), x) # Stage5 - x = self.features[14](x) - x = self.features[15](x) - x = self.features[16](x) - x = self.features[17](x) - x = self.features[18](x) + x = reduce(lambda x, n: self.features[n](x), list(range(14,19)), x) # Classification if self.num_classes is not None: diff --git a/src/models/backbones/wrapper.py b/src/models/backbones/wrapper.py index 72b8f17..36817ba 100644 --- a/src/models/backbones/wrapper.py +++ b/src/models/backbones/wrapper.py @@ -36,38 +36,15 @@ class MobileNetV2Backbone(BaseBackbone): self.enc_channels = [16, 24, 32, 96, 1280] def forward(self, x): - # x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x) - x = self.model.features[0](x) - x = self.model.features[1](x) + x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x) enc2x = x - - # x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x) - x = self.model.features[2](x) - x = self.model.features[3](x) + x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x) enc4x = x - - # x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x) - x = self.model.features[4](x) - x = self.model.features[5](x) - x = self.model.features[6](x) + x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x) enc8x = x - - # x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x) - x = self.model.features[7](x) - x = self.model.features[8](x) - x = self.model.features[9](x) - x = self.model.features[10](x) - x = self.model.features[11](x) - x = self.model.features[12](x) - x = self.model.features[13](x) + x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x) enc16x = x - - # x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x) - x = self.model.features[14](x) - x = self.model.features[15](x) - x = self.model.features[16](x) - x = self.model.features[17](x) - x = self.model.features[18](x) + x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x) enc32x = x return [enc2x, enc4x, enc8x, enc16x, enc32x]