""" Inference with onnxruntime Arguments: --image-path --> path to single input image --output-path --> paht to save generated matte --model-path --> path to onnx model file example: python inference_onnx.py \ --image-path=demo.jpg \ --output-path=matte.png \ --model-path=modnet.onnx Optional: Generate transparent image without background """ import os import argparse import cv2 import numpy as np import onnx import onnxruntime from onnx import helper from PIL import Image if __name__ == '__main__': # define cmd arguments parser = argparse.ArgumentParser() parser.add_argument('--image-path', type=str, help='path of input image') parser.add_argument('--output-path', type=str, help='path of output image') parser.add_argument('--model-path', type=str, help='path of onnx model') args = parser.parse_args() # check input arguments if not os.path.exists(args.image_path): print('Cannot find input path: {0}'.format(args.image_path)) exit() if not os.path.exists(args.model_path): print('Cannot find model path: {0}'.format(args.model_path)) exit() ref_size = 512 # Get x_scale_factor & y_scale_factor to resize image def get_scale_factor(im_h, im_w, ref_size): if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size: if im_w >= im_h: im_rh = ref_size im_rw = int(im_w / im_h * ref_size) elif im_w < im_h: im_rw = ref_size im_rh = int(im_h / im_w * ref_size) else: im_rh = im_h im_rw = im_w im_rw = im_rw - im_rw % 32 im_rh = im_rh - im_rh % 32 x_scale_factor = im_rw / im_w y_scale_factor = im_rh / im_h return x_scale_factor, y_scale_factor ############################################## # Main Inference part ############################################## # read image im = cv2.imread(args.image_path) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) # unify image channels to 3 if len(im.shape) == 2: im = im[:, :, None] if im.shape[2] == 1: im = np.repeat(im, 3, axis=2) elif im.shape[2] == 4: im = im[:, :, 0:3] # normalize values to scale it between -1 to 1 im = (im - 127.5) / 127.5 im_h, im_w, im_c = im.shape x, y = get_scale_factor(im_h, im_w, ref_size) # resize image im = cv2.resize(im, None, fx = x, fy = y, interpolation = cv2.INTER_AREA) # prepare input shape im = np.transpose(im) im = np.swapaxes(im, 1, 2) im = np.expand_dims(im, axis = 0).astype('float32') # Initialize session and get prediction session = onnxruntime.InferenceSession(args.model_path, None) input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name result = session.run([output_name], {input_name: im}) # refine matte matte = (np.squeeze(result[0]) * 255).astype('uint8') matte = cv2.resize(matte, dsize=(im_w, im_h), interpolation = cv2.INTER_AREA) cv2.imwrite(args.output_path, matte) ############################################## # Optional - save png image without background ############################################## # im_PIL = Image.open(args.image_path) # matte = Image.fromarray(matte) # im_PIL.putalpha(matte) # add alpha channel to keep transparency # im_PIL.save('without_background.png')