Revert "Merge TorchScript Version (#76)"

This reverts commit 26cae0fe03.
revert-76-master
Zhanghan Ke 2021-03-05 11:32:19 +08:00 committed by GitHub
parent 26cae0fe03
commit feb9efdfb6
6 changed files with 11 additions and 377 deletions

View File

@ -1,12 +0,0 @@
## Usage:
```shell
python export_torchscript.py \
--ckpt-path pretrained/modnet_photographic_portrait_matting.ckpt\
--out-dir scripted_model
```
## Official TorchScript model:
[BaiduCloudDisk](https://pan.baidu.com/s/1kOmmmbG7lSZiSmDdE7CaRw), extract_code=dm9e

View File

@ -1,42 +0,0 @@
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from . import modnet_torchscript
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--ckpt-path', type=str, help='path of pre-trained MODNet')
parser.add_argument('--out-dir', type=str, required=True, help='path for saving the TorchScript model')
args = parser.parse_args()
# check input arguments
if not os.path.exists(args.ckpt_path):
print('Cannot find checkpoint path: {0}'.format(args.ckpt_path))
exit()
if not os.path.exists(args.out_dir):
os.mkdir(args.out_dir)
# create MODNet and load the pre-trained ckpt
modnet = MODNet(backbone_pretrained=True)
# modnet = nn.DataParallel(modnet).cuda()
modnet = modnet.cuda()
ckpt = torch.load(args.ckpt)
# if use more than one GPU
if 'module.' in ckpt.keys():
ckpt = OrderedDict()
for k, v in ckpt.items():
k = k.replace('module.', '')
ckpt[k] = v
modnet.load_state_dict(ckpt)
modnet.eval()
scripted_model = torch.jit.script(modnet)
torch.jit.save(scripted_model, os.path.join(args.out_dir,'modnet.pt'))

View File

@ -1,275 +0,0 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
# from .backbones import SUPPORTED_BACKBONES
from .backbones import SUPPORTED_BACKBONES
#------------------------------------------------------------------------------
# MODNet Basic Modules
#------------------------------------------------------------------------------
class IBNorm(nn.Module):
""" Combine Instance Norm and Batch Norm into One Layer
对一半channel做BN一半做IN
"""
def __init__(self, in_channels):
super(IBNorm, self).__init__()
in_channels = in_channels
self.bnorm_channels = int(in_channels / 2)
self.inorm_channels = in_channels - self.bnorm_channels
self.bnorm = nn.BatchNorm2d(self.bnorm_channels, affine=True)
self.inorm = nn.InstanceNorm2d(self.inorm_channels, affine=False)
def forward(self, x):
bn_x = self.bnorm(x[:, :self.bnorm_channels, ...].contiguous())
in_x = self.inorm(x[:, self.bnorm_channels:, ...].contiguous())
return torch.cat((bn_x, in_x), 1)
class Conv2dIBNormRelu(nn.Module):
""" Convolution + IBNorm + ReLu
"""
def __init__(self, in_channels, out_channels, kernel_size,
stride=1, padding=0, dilation=1, groups=1, bias=True,
with_ibn=True, with_relu=True):
super(Conv2dIBNormRelu, self).__init__()
layers = [
nn.Conv2d(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, dilation=dilation,
groups=groups, bias=bias)
]
if with_ibn:
layers.append(IBNorm(out_channels))
if with_relu:
layers.append(nn.ReLU(inplace=True))
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class SEBlock(nn.Module):
""" SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
通道 Attention
"""
def __init__(self, in_channels, out_channels, reduction=1):
super(SEBlock, self).__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, int(in_channels // reduction), bias=False),
nn.ReLU(inplace=True),
nn.Linear(int(in_channels // reduction), out_channels, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
w = self.pool(x).view(b, c)
w = self.fc(w).view(b, c, 1, 1)
return x * w.expand_as(x)
#------------------------------------------------------------------------------
# MODNet Branches
#------------------------------------------------------------------------------
class LRBranch(nn.Module):
""" Low Resolution Branch of MODNet
"""
def __init__(self, backbone):
super(LRBranch, self).__init__()
enc_channels = backbone.enc_channels
# ==> self.enc_channels = [16, 24, 32, 96, 1280]
self.backbone = backbone
self.se_block = SEBlock(enc_channels[4], enc_channels[4], reduction=4)
self.conv_lr16x = Conv2dIBNormRelu(enc_channels[4], enc_channels[3], 5, stride=1, padding=2)
self.conv_lr8x = Conv2dIBNormRelu(enc_channels[3], enc_channels[2], 5, stride=1, padding=2)
self.conv_lr = Conv2dIBNormRelu(enc_channels[2], 1, kernel_size=3, stride=2, padding=1, with_ibn=False, with_relu=False)
def forward(self, img, inference):
enc_features = self.backbone.forward(img)
enc2x, enc4x, enc32x = enc_features[0], enc_features[1], enc_features[4]
# 对最后一层进行通道注意力
enc32x = self.se_block(enc32x)
# 再上采样4倍
lr16x = F.interpolate(enc32x, scale_factor=2.0, mode='bilinear', align_corners=False)
lr16x = self.conv_lr16x(lr16x)
lr8x = F.interpolate(lr16x, scale_factor=2.0, mode='bilinear', align_corners=False)
lr8x = self.conv_lr8x(lr8x)
pred_semantic = torch.tensor([]) # None
if not inference:
lr = self.conv_lr(lr8x)
pred_semantic = torch.sigmoid(lr)
return pred_semantic, lr8x, [enc2x, enc4x]
class HRBranch(nn.Module):
""" High Resolution Branch of MODNet
"""
def __init__(self, hr_channels, enc_channels):
super(HRBranch, self).__init__()
self.tohr_enc2x = Conv2dIBNormRelu(enc_channels[0], hr_channels, 1, stride=1, padding=0)
self.conv_enc2x = Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=2, padding=1)
self.tohr_enc4x = Conv2dIBNormRelu(enc_channels[1], hr_channels, 1, stride=1, padding=0)
self.conv_enc4x = Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1)
self.conv_hr4x = nn.Sequential(
Conv2dIBNormRelu(3 * hr_channels + 3, 2 * hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
)
self.conv_hr2x = nn.Sequential(
Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
)
self.conv_hr = nn.Sequential(
Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(hr_channels, 1, kernel_size=1, stride=1, padding=0, with_ibn=False, with_relu=False),
)
def forward(self, img, enc2x, enc4x, lr8x, inference):
img2x = F.interpolate(img, scale_factor=1/2, mode='bilinear', align_corners=False)
img4x = F.interpolate(img, scale_factor=1/4, mode='bilinear', align_corners=False)
enc2x = self.tohr_enc2x(enc2x)
# 把原图叠加到通道上
hr4x = self.conv_enc2x(torch.cat((img2x, enc2x), dim=1))
# 把两个 featmap 连接
enc4x = self.tohr_enc4x(enc4x)
hr4x = self.conv_enc4x(torch.cat((hr4x, enc4x), dim=1))
lr4x = F.interpolate(lr8x, scale_factor=2.0, mode='bilinear', align_corners=False)
hr4x = self.conv_hr4x(torch.cat((hr4x, lr4x, img4x), dim=1))
hr2x = F.interpolate(hr4x, scale_factor=2.0, mode='bilinear', align_corners=False)
hr2x = self.conv_hr2x(torch.cat((hr2x, enc2x), dim=1))
pred_detail = torch.tensor([]) # None
if not inference:
hr = F.interpolate(hr2x, scale_factor=2.0, mode='bilinear', align_corners=False)
hr = self.conv_hr(torch.cat((hr, img), dim=1))
pred_detail = torch.sigmoid(hr)
return pred_detail, hr2x
class FusionBranch(nn.Module):
""" Fusion Branch of MODNet
"""
def __init__(self, hr_channels, enc_channels):
super(FusionBranch, self).__init__()
self.conv_lr4x = Conv2dIBNormRelu(enc_channels[2], hr_channels, 5, stride=1, padding=2)
self.conv_f2x = Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1)
self.conv_f = nn.Sequential(
Conv2dIBNormRelu(hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
Conv2dIBNormRelu(int(hr_channels / 2), 1, 1, stride=1, padding=0, with_ibn=False, with_relu=False),
)
def forward(self, img, lr8x, hr2x):
lr4x = F.interpolate(lr8x, scale_factor=2.0, mode='bilinear', align_corners=False)
lr4x = self.conv_lr4x(lr4x)
lr2x = F.interpolate(lr4x, scale_factor=2.0, mode='bilinear', align_corners=False)
f2x = self.conv_f2x(torch.cat((lr2x, hr2x), dim=1))
f = F.interpolate(f2x, scale_factor=2.0, mode='bilinear', align_corners=False)
f = self.conv_f(torch.cat((f, img), dim=1))
pred_matte = torch.sigmoid(f)
return pred_matte
#------------------------------------------------------------------------------
# MODNet
#------------------------------------------------------------------------------
class MODNet(nn.Module):
""" Architecture of MODNet
"""
def __init__(self, in_channels=3, hr_channels=32, backbone_arch='mobilenetv2', backbone_pretrained=True):
super(MODNet, self).__init__()
self.in_channels = in_channels
self.hr_channels = hr_channels
self.backbone_arch = backbone_arch
self.backbone_pretrained = backbone_pretrained
self.backbone = SUPPORTED_BACKBONES[self.backbone_arch](self.in_channels)
self.lr_branch = LRBranch(self.backbone)
self.hr_branch = HRBranch(self.hr_channels, self.backbone.enc_channels)
self.f_branch = FusionBranch(self.hr_channels, self.backbone.enc_channels)
for m in self.modules():
if isinstance(m, nn.Conv2d):
self._init_conv(m)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
self._init_norm(m)
if self.backbone_pretrained:
self.backbone.load_pretrained_ckpt()
def forward(self, img, inference):
pred_semantic = self.lr_branch(img, inference)[0]
lr8x = self.lr_branch(img, inference)[1]
enc2x = self.lr_branch(img, inference)[2][0]
enc4x = self.lr_branch(img, inference)[2][1]
pred_detail = self.hr_branch(img, enc2x, enc4x, lr8x, inference)[0]
hr2x = self.hr_branch(img, enc2x, enc4x, lr8x, inference)[1]
pred_matte = self.f_branch(img, lr8x, hr2x)
return pred_semantic, pred_detail, pred_matte
def freeze_norm(self):
norm_types = [nn.BatchNorm2d, nn.InstanceNorm2d]
for m in self.modules():
for n in norm_types:
if isinstance(m, n):
m.eval()
continue
def _init_conv(self, conv):
nn.init.kaiming_uniform_(
conv.weight, a=0, mode='fan_in', nonlinearity='relu')
if conv.bias is not None:
nn.init.constant_(conv.bias, 0)
def _init_norm(self, norm):
if norm.weight is not None:
nn.init.constant_(norm.weight, 1)
nn.init.constant_(norm.bias, 0)
if __name__ == "__main__":
IbNorm = IBNorm(20)
out = IbNorm(torch.randn((1,3,224,224)))
print(out.shape)

View File

@ -136,31 +136,17 @@ class MobileNetV2(nn.Module):
# Initialize weights
self._init_weights()
def forward(self, x):
def forward(self, x, feature_names=None):
# Stage1
x = self.features[0](x)
x = self.features[1](x)
x = reduce(lambda x, n: self.features[n](x), list(range(0,2)), x)
# Stage2
x = self.features[2](x)
x = self.features[3](x)
x = reduce(lambda x, n: self.features[n](x), list(range(2,4)), x)
# Stage3
x = self.features[4](x)
x = self.features[5](x)
x = self.features[6](x)
x = reduce(lambda x, n: self.features[n](x), list(range(4,7)), x)
# Stage4
x = self.features[7](x)
x = self.features[8](x)
x = self.features[9](x)
x = self.features[10](x)
x = self.features[11](x)
x = self.features[12](x)
x = self.features[13](x)
x = reduce(lambda x, n: self.features[n](x), list(range(7,14)), x)
# Stage5
x = self.features[14](x)
x = self.features[15](x)
x = self.features[16](x)
x = self.features[17](x)
x = self.features[18](x)
x = reduce(lambda x, n: self.features[n](x), list(range(14,19)), x)
# Classification
if self.num_classes is not None:

View File

@ -36,38 +36,15 @@ class MobileNetV2Backbone(BaseBackbone):
self.enc_channels = [16, 24, 32, 96, 1280]
def forward(self, x):
# x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
x = self.model.features[0](x)
x = self.model.features[1](x)
x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
enc2x = x
# x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
x = self.model.features[2](x)
x = self.model.features[3](x)
x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
enc4x = x
# x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
x = self.model.features[4](x)
x = self.model.features[5](x)
x = self.model.features[6](x)
x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
enc8x = x
# x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
x = self.model.features[7](x)
x = self.model.features[8](x)
x = self.model.features[9](x)
x = self.model.features[10](x)
x = self.model.features[11](x)
x = self.model.features[12](x)
x = self.model.features[13](x)
x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
enc16x = x
# x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
x = self.model.features[14](x)
x = self.model.features[15](x)
x = self.model.features[16](x)
x = self.model.features[17](x)
x = self.model.features[18](x)
x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
enc32x = x
return [enc2x, enc4x, enc8x, enc16x, enc32x]